

MULTI FACTOR INVESTING

The Team

Johanan Anton Pranesh

I'm a second year Master's in Financial Engineering candidate at Lehigh with a background in Math and industry experience in a hedge fund. My projects have been focused on Multi-Factor investing, Index development, NLP in CDS and other financial instruments, and machine learning optimization.

Sisheng Liang
MFE'25

Kshitij Bhandari MFE'26

Vincent Batten
MFE 4+`1

Overview

Introduction

Factors:

- Characteristics that explain the return of equities and influence variations in portfolios
- For this project, we are focusing on the Fama-French factors such as size, value, and market risk

Multi-factor investing:

- An investment strategy that combines multiple factors to achieve specific investment goals, like higher returns or lower risk
- It enhances diversification and seeks to optimize portfolio performance

Objectives

- To create a systematic framework for multifactor investing in equities
- To systematically identify, measure, and integrate factor exposure that historically drive returns.
- To provide a structured approach for building diversified portfolios that are tailored to capture these factors while maximizing risk-adjusted returns.
- Identify optimal rebalancing and holding period for various factor exposures

Goals:

- Using Monte Carlo simulations, learn about the expectation and variance of the portfolio for specific target exposures and compare its performance with the SP 500
- Implement strategies such as hedging to note its impact on factor decay as well as on rebalancing of the portfolio
- Discover new target exposures using reinforcement learning that relies on back tested information which offer better downside protection
- Understand the optimal holding period for factor combinations
- Compare the effect of tax-loss harvesting, alpha signal from alternative data on performance

Project

Optimization

- Minimizes the error term in portfolio returns
- Ensures the portfolio's factor exposure aligns with the desired factor exposures
- Optimizes the number of shares to be bought/sold
- Minimizes transaction costs

Constraints:

- Weight constraints
- Error constraints
- Transaction costs constraint
- Number of stocks constraint

Findings from Monte Carlo Simulations

Base case (Pure market strategy)

Reinforcement case (1,0.7,0.7 strategy)

Non-Rebalancing

2022

2023

2024

2021

Rebalancing

New best case (1,1,0 strategy)

2024

2025

Non-Rebalancing

Optimized Portfolio Comparison with SP_500 and Average for every 1 dollar invested 2.2 2.0 1.8 1.6 2.1 1.0 0.8

Months

Rebalancing

Non Rebalancing vs Rebalancing

Non-Rebalancing

Rebalancing

Performance of different strategies

Reinforcement performance

Reinforcement performance

MoM

SMB Factor With vs Without Futures

HML Factor With vs Without Futures

Mkt-RF Factor With vs Without Futures

Alpha Signal Framework

- Developed an alpha signal framework based on a dataset of news headlines
- Utilized an LLM model to extract sentiment labels and their associated probabilities
- Engineered features using statistical measures such as standard deviation, skewness, kurtosis, and various aggregations of existing features to create a weekly data point

Reinforcement Learning

Bandit algorithm

- To find new combinations of factors that provide better downside protection compared with the benchmark
- Enhanced with Monte Carlo simulations to explore new combinations and avoid previously tested options.
- Prioritizes changes in factor combinations that could yield improved downside protection.
- Uses ε-equalizing algorithm to have higher exploration & lower exploitation
- Avoids redundancy and concentrates computational efforts on discovering new, promising strategies.

Results from Reinforcement Learning

Market Beta	Size beta	Value beta	Year 1	Sharpe Ratio
SP500	SP500	SP500	13.0%	0.66
1	0.5	0.5	-15.6%	0.64
1	1	1	-5.3%	0.65
1	0	1	-4.1%	0.57
1	0	0	3.9%	0.61
1.1	0	0	4.2%	0.63
0.8	1	0.3	7.8%	0.88
1	1	0	13.3%	0.84
0.8	1	0	20.0%	1.00
0.8	1.1	0	23.1%	1.08

Strategies

For Enhanced Returns and Risk Management

- Futures Hedging
- Tax loss harvesting
- Alpha signals from alternative data

Futures Hedging

- Using futures on indices with the highest hedge ratios to maintain exposure to individual factors
- To prevent factor decay by maintaining consistent factor weights without the need for frequent rebalancing
- To protect against short-term market movements
- Uses a ML algorithm to pick the optimal future from a basket of index futures

TLH Optimizer (Tax Loss Harvesting)

<u>Tax-loss harvesting is a way to convert investment losses into tax savings.</u>

Modified the Optimization Model by adding more constraints:

Identify losing positions \rightarrow Find assets with **unrealized losses**.

Sell the losing asset \rightarrow Realize a capital loss.

Offset taxable gains → Reduce capital gains or deduct against income.

Avoid the wash sale rule \rightarrow Wait 30+ days before rebuying the same asset.

Alpha signal generator

- The overall goal of this is to try to find a relationship between the sentiment analysis and our factors
- If we find meaningful relationships, then we could factor this into our rebalancing strategy
- It can additionally be used as a constraint as to what to sell/buy when rebalancing
- Using unstructured data, we are able to identify equities that are to be avoided in our portfolio construction

SVRG Optimization

Objective: Minimize the error between portfolio returns and expected returns subject to constraints like:

- Non-negative weights
- Weight sum equals 1
- Transaction cost constraints
- Maximum number of assets with non-zero weights

How SVRG Enhances Optimization:

Efficient Convergence:

SVRG handles large datasets by reducing the variance in gradient estimates, leading to faster convergence compared to traditional optimization methods.

Constraints Handling:

SVRG efficiently integrates constraints such as transaction costs and weight limits, reducing the optimization complexity by using variance-reduced gradients to avoid large changes in weights.

Task completed the last 2 weeks

- New system is up and running
- Tax loss harvesting optimizer is designed and implemented
- New project set up and outlook has been implemented
- Gathered the insights requested for identifying the performance difference between different strategies
- Future simulator was tested and integrated into the main functionalities

Current goals

- To determine the optimal rebalancing interval, balancing risk and return across various factors.
- To identify and develop new beta strategies that offer sustainable long-term performance and less volatility
- Compare the effectiveness of rebalancing strategies like future-based hedging versus tax loss harvesting
- To understand the effect of alpha signal from alternative data on betas

Thank you for your time

To answer any further questions, please contact:

Johanan Pranesh johanananton@outlook.com

Future hedging results

Betas at 7/1/17

Mkt-RF	0.718374	ETF Name	Position	Number of Contracts	Cost of Contracts (\$)	EOM Value (\$)	P/L (\$)	P/L (%)
SMB	B 0.159458	ES=F	NO ACTION	0.0	0.000	0.000	0.00	0.00
		IWM	NO ACTION	0.0	0.000	0.000	0.00	0.00
HML	-0.510511	0.510511 IWB	LONG	9.0	16290.421	16420.808	130.39	0.11
	0.510511	IWD	LONG	2.0	58762.751	59388.438	625.69	0.53
		IWF	SHORT	2.0	43454.827	43743.888	-289.06	-0.24

Risk Factor Value Factor

Size Factor

	Contracts	Action	Hedge Profit
Period			
3	0.0	no action	\$0.00
6	0.0	no action	\$0.00
9	1.0	SHORT	\$-524.75

	Contracts	Action	Hedge Profit
Period			
3	1.0	SHORT	\$-247.70
6	1.0	SHORT	\$-333.00
9	1.0	SHORT	\$-226.00

	Contracts	Action	Hedge Profit
Period			
3	3.0	LONG	\$743.10
6	2.0	SHORT	\$-666.00
9	1.0	SHORT	\$-320.50