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Introduction

Factors:

e Characteristics that explain the return of equities and influence variations in
portfolios

e For this project, we are focusing on the Fama-French factors such as size,
value, and market risk

Multi-factor investing :

e An investment strategy that combines multiple factors to achieve specific
investment goals, like higher returns or lower risk

e It enhances diversification and seeks to optimize portfolio performance
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Objectives

e To create a systematic framework for multifactor investing in equities

e To systematically identify, measure, and integrate factor exposure that
historically drive returns.

e To provide a structured approach for building diversified portfolios that are
tailored to capture these factors while maximizing risk-adjusted returns.

e Identify optimal rebalancing and holding period for various factor exposures
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Goals:

e Using Monte Carlo simulations, learn about the expectation and variance of
the portfolio for specific target exposures and compare its performance with
the SP 500

e Implement strategies such as hedging to note its impact on factor decay as
well as on rebalancing of the portfolio

e Discover new target exposures using reinforcement learning that relies on
back tested information which offer better downside protection

e Understand the optimal holding period for factor combinations

e Compare the effect of tax-loss harvesting, alpha signal from alternative data
on performance




Project




® LEHIGH

Optimization

e Minimizes the error term in portfolio returns

e Ensures the portfolio's factor exposure aligns with the desired factor
exposures

e Optimizes the number of shares to be bought/sold

e Minimizes transaction costs

Constraints:

e Weight constraints

e Error constraints

e Transaction costs constraint
e Number of stocks constraint




Multi-Factor model

Data gathering and
manipulation
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Findings from Monte Carlo Simulations
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Base case (Pure market strategy)

Non-Rebalancing

Optimized Portfalio Comparisen with SP_500 and Average for every 1 dollar invested

Rebalancing

Optimized Portfolio Comparison with SP_500 and Average for every 1 dollar invested
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Reinforcement case (1,0.7,0.7 strategy)

Optimized Portfolio Comparison with SP_500 and Awerage for every 1 dellar irmeested

Non-Rebalancing

Rebalancing

Optimized Portfolio Cormparison with SP_500 and Average for every 1 dollar invested
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New best case (1,1,0 strategy)

Non-Rebalancing Rebalancing
Optimized Portfolio Cornparisen with SP_500 and Average for every 1 doliar invested Optimized Portfolio Comparison with SP_500 and Average for every 1 dellar invested
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Non Rebalancing vs Rebalancing

Non-Rebalancing

Various Opti d Portfelio C for every 1 dollar invested

Rebalancing

Various Opti d Portfolio C for every 1 dollar imvested
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Performance of different strategies
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Reinforcement performance

Optimized Portfolio Comparison with SP_500 and Average for every 1 dollar invested
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Reinforcement performance

Optimized Portfolio Comparison with SP_S00 for every 1 dollar invested
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Realized Volatility of Optimal Portfolio vs SPY
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Realized Volatility

Realized Volatility of Optimized Portfolios: With vs. Without Futures
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SMB Factor Beta

SMB Factor With vs Without Futures
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HML Factor Beta

HML Factor With vs Without Futures
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Mkt-RF Factor Beta

Mkt-RF Factor With vs Without Futures
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Alpha Signhal Framework

e Developed an alpha signal framework based on a dataset of news
headlines

e Utilized an LLM model to extract sentiment labels and their
associated probabilities

e Engineered features using statistical measures such as standard
deviation, skewness, kurtosis, and various aggregations of
existing features to create a weekly data point



Reinforcement Learning
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Bandit algorithm

e To find new combinations of factors that provide better downside protection compared with
the benchmark

e Enhanced with Monte Carlo simulations to explore new combinations and avoid previously
tested options.

e Prioritizes changes in factor combinations that could yield improved downside protection.

e Uses e-equalizing algorithm to have higher exploration & lower exploitation

e Avoids redundancy and concentrates computational efforts on discovering new, promising
strategies.
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Results from Reinforcement Learning
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e Futures Hedging

St rateg Ies e Tax loss harvesting

e Alpha signals from alternative
data

For Enhanced Returns and Risk
Management
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Futures Hedging

e Using futures on indices with the highest hedge ratios to maintain
exposure to individual factors

e To prevent factor decay by maintaining consistent factor weights
without the need for frequent rebalancing

e To protect against short-term market movements

e Uses a ML algorithm to pick the optimal future from a basket of index
futures




TLH Optimizer (Tax Loss Harvesting)

Tax-loss harvesting is a way to convert investment losses into tax savings.

Modified the Optimization Model by adding more constraints:
Identify losing positions — Find assets with unrealized losses.
Sell the losing asset — Realize a capital loss.
Offset taxable gains — Reduce capital gains or deduct against income.

Avoid the wash sale rule — Wait 30+ days before rebuying the same asset.



Alpha signal generator

e The overall goal of this is to try to find a relationship between the sentiment
analysis and our factors

e If we find meaningful relationships, then we could factor this into our
rebalancing strategy

e It can additionally be used as a constraint as to what to sell/buy when
rebalancing

e Using unstructured data, we are able to identify equities that are to be
avoided in our portfolio construction
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SVRG Optimization

Objective: Minimize the error between portfolio returns and expected returns subject to
constraints like:

Non-negative weights

Weight sum equals 1

Transaction cost constraints

Maximum number of assets with non-zero weights

How SVRG Enhances Optimization:
Efficient Convergence:

SVRG handles large datasets by reducing the variance in gradient estimates, leading to
faster convergence compared to traditional optimization methods.

Constraints Handling:

SVRG efficiently integrates constraints such as transaction costs and weight limits,
reducing the optimization complexity by using variance-reduced gradients to avoid large
changes in weights.



Task completed the last 2 weeks

e New system is up and running

e Tax loss harvesting optimizer is designed and implemented

e New project set up and outlook has been implemented

e Gathered the insights requested for identifying the performance
difference between different strategies

e Future simulator was tested and integrated into the main functionalities



® LEHIGH

Current goals

e To determine the optimal rebalancing interval, balancing risk and return
across various factors.

e To identify and develop new beta strategies that offer sustainable long-term
performance and less volatility

e Compare the effectiveness of rebalancing strategies like future-based hedging
versus tax loss harvesting

e To understand the effect of alpha signal from alternative data on betas




Thank you for your time

To answer any further questions, please contact:

Johanan Pranesh
johanananton@outlook.com



Future hedging results

Betas at 7/1/17

roitin " ooty e o
Mkt-RF 0.718374
Name

s M E ﬂ 1 5 9 4 5 8 ES=F A CTlgﬁ 0.0 0.000 0.000 0.00 0.00

IWM A *:.'Tlgﬁ 0.0 0.000 0.000 0.00 0.00

HM L 'ﬂ. 5 'I [}5 ’I ’I IwWB LONG 9.0 16290.421 16420.808 130.39 0.11

IWD LONG 2.0 58762.751 59388.438 625.69 0.53

IWF SHORT 2.0 43454.827 43743.868 -289.06 -0.24



Risk Factor
Value Factor

Size Factor

Contracts  Action Hedge Profit
Period
3 00 no action $0.00
6 0.0 no action £0.00
9 10  SHORT §-524.75

Period

6

9

Contracts Action Hedge Profit

1.0 SHORT §-247.70
1.0 SHORT $-333.00
1.0 SHORT $-226.00

Period

Contracts

3.0

2.0

1.0

Action Hedge Profit

LONG §743.10
SHORT $-666.00
SHORT $-320.50
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